67 research outputs found

    Candida albicans quorum-sensing molecule farnesol modulates staphyloxanthin production and activates the thiol-based oxidative-stress response in Staphylococcus aureus

    Get PDF
    Microbial species utilize secreted-signaling molecules to coordinate their behavior. Our previous investigations demonstrated a key role for the Candida albicans-secreted quorum-sensing molecule farnesol in modulating Staphylococcus aureus response to antimicrobials in mixed biofilms. In this study, we aimed to provide mechanistic insights into the impact of farnesol on S. aureus within the context of inter-species interactions. To mimic biofilm dynamics, farnesol-sensitized S. aureus cells were generated via sequential farnesol exposure. The sensitized phenotype exhibited dramatic loss of the typical pigment, which we identified as staphyloxanthin, an important virulence factor synthesized by the Crt operon in S. aureus. Additionally, farnesol exposure exerted oxidative-stress as indicated by transcriptional analysis demonstrating alterations in redox-sensors and major virulence regulators. Paradoxically, the activated stress-response conferred S. aureus with enhanced tolerance to H2O2 and phagocytic killing. Since expression of enzymes in the staphyloxanthin biosynthesis pathway was not impacted by farnesol, we generated a theoretical-binding model which indicated that farnesol may block staphyloxanthin biosynthesis via competitive-binding to the CrtM enzyme crucial for staphyloxanthin synthesis, due to high structural similarity to the CrtM substrate. Finally, mixed growth with C. albicans was found to similarly induce S. aureus depigmentation, but not during growth with a farnesol-deficient C. albicans strain. Collectively, the findings demonstrate that a fungal molecule acts as a redox-cycler eliciting a bacterial stress response via activation of the thiol-based redox system under the control of global regulators. Therefore, farnesol-induced transcriptional modulations of key regulatory networks in S. aureus may modulate the pathogenesis of C. albicans- S. aureus co-infections

    Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions

    Get PDF
    Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution

    Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys

    Get PDF
    Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology.https://doi.org/10.1186/1471-2164-15-73
    corecore